作 者: 张振刚;
机构地区: 华南理工大学工商管理学院
出 处: 《管理案例研究与评论》 2022年第1期85-98,共14页
摘 要: 数字经济时代下,数据成为关键生产要素,驱动制造企业生产力和生产方式变革。然而,大数据对生产精益化的赋能机理有待深入探讨,特别是从关键生产要素到精益生产绩效之间的作用机理仍旧模糊。基于资源协奏理论和大数据相关理论,以格力电器为案例研究对象,探索大数据赋能制造企业精益生产的内在机理,构建揭开大数据“如何赋能精益生产”暗箱的整合性理论模型。研究表明:大数据作为企业的异质资源,先支持企业构建一阶的大数据能力,再转化为精益生产中的流动能力、拉动能力、低设置能力等二阶能力,最终帮助制造业企业提质增效。此外,在大数据赋能生产精益化过程中,大数据的资源协奏以及大数据能力间的相互依赖性有力推动了生产精益化。 In the era of digital economy,data has become a key factor of production,driving the transformation of productivity and production mode of manufacturing enterprises.However,the enabling mechanism of big data on lean production needs to be further explored,especially the mechanism from key production factors to lean production performance.Based on the theory of resource orchestration and big data related theories,taking Gree Electric as the case study object,this paper explores the inner mechanism of big data-enabled lean manufacturing enterprises,and builds an integrated theoretical model to uncover the dark box of“how to enable lean production”of big data.It is found that big data,as a heterogeneous resource of enterprises,first of all,supports enterprises to build first-order big data capabilities,and then transforms them into second-order capabilities such as flow,pull and low setting in lean production,and finally helps manufacturing enterprises improve their quality and efficiency.In addition,in the process of lean production enabled by big data,the resource orchestration of big data and the interdependence between big data capabilities strongly promote lean production.
领 域: [经济管理—产业经济]